Uncategorized

Article in Foreign Affairs

Last year I was fortunate enough to get to attend a remarkable workshop at the University of Sidney lead by James Der Derian. It was part of a workshop series and documentary project that James is leading called Project Q: Peace and Security in the Quantum Age. The goal of the project is to bring together a broad range of interdisciplinary scholars, (physicists, biologists, philosophers, political scientists, artists, poets) to explore the potential implications of a second generation of quantum science. James is better than anyone I have ever encountered at developing creative and thought provoking conversations and his documentary about this project is going to be remarkable. This article builds on the summary remarks I made at the Q3 workshop, and explores some of the potential implications of various strands of quantum science for international peace and security.

The full article, Quantum Leap, is here, and below is a concluding excerpt:

The promise of quantum science has always been epistemological. It changes how and what we know. As a second generation of quantum technology comes online, three critical questions raised by and explored through Project Q are critical.

The first is whether quantum technologies will prove emancipatory or will reconcentrate power in the hands of states. At the Q Symposium, Professor Michael Biercuk, an experimental physicist and director of the Quantum Control Laboratory at the University of Sydney, pointed out that “new technology drives radical social change.” If we are going to take seriously the proposition that quantum could be disruptive, let alone emancipatory, then we need to ask who are the nimble outsiders developing these technologies to take on legacy institutions, and at what point will access to these technologies be democratized and available to the many in ways that challenge existing structures. It is far more likely that the early stages of the deployment of the technology will benefit incumbent actors.

Take the case of quantum positioning and quantum communications. On the one hand, these technologies have the potential to dramatically increase military capabilities. On the other hand, they could also profoundly empower individuals, providing new levels of privacy and agency if they trickle down into the public sector. For example, the tech journalist Patrick Tucker has suggested that quantum location technologies could potentially provide a replacement for the GPS in phones and hand-held devices, allowing them to run offline and perhaps keep the location data out of the hands of carriers or snooping government agencies. But power is often zero-sum. And it is worth assuming that the interests of those developing these technologies will determine who is empowered by them.

Observers also need to ask who is competing to get these technologies, and is there a tension between and within emerging strategic alliances. As Biercuk pointed out, the research has moved from “things to study to things to exploit,” meaning there will be real competition for capabilities that can be monopolized. There is a profound tension between the spirit of cooperation (the U.S. government and Silicon Valley, International Research labs) and the opportunities for strategic, scientific, and commercial gain: a confluence of interests that has led commentators to warn of an impending “quantum arms race.” We may have lost the window for a truly international project because the incentives for commercial and security gains are too strong. Along with the United States and China, Australia, Russia, and United Kingdom all are involved in the global race for quantum computing.

Third, and perhaps most important, it is time to begin thinking through how the world will govern emerging quantum technologies. In order to control the digital space, one needs both data and the tools to give them meaning. With meaning will come control and power, which opens up a wide range of governance challenges. According to Jairus Grove, director of the University of Hawaii’s Research Center for Futures Studies, quantum technologies pose a “direct challenge to democratic decision-making and accountability.” As government agencies seek to collect “the whole haystack,” as the former NSA chief Keith Alexander once put it, and utilize increasingly algorithmically oriented forms of governance to rule their citizens, how do we ensure that even more opaque quantum algorithms are employed responsibly?

As a limited number of states and corporations seek fault-tolerant quantum technologies to exploit a decisive military advantage, they will surely change the ways in which we think about power and control in the international system. But even beyond shifts in power, so-called quantum social theory could be used to help researchers metaphorically and empirically understand social phenomena. In a new book on quantum theory, Alexander Wendt, a professor of political science at Ohio State, argues that although classical physics cannot explain concepts such as consciousness, perhaps thinking of collections of human minds as a quantum machine, and subject to the emerging scientific knowledge of quantum phenomena, can scientifically ground our understanding of social collectives. Quantum science could change how we know the world.

The first generation of quantum science unleashed not only the power of atomic weapons but new ways of understanding the universe. The scientists developing quantum technologies were actively engaged in heated debates about the moral responsibility of both. Project Q has sought to replicate this moment. As research continues at a breakneck pace, and as the hype around quantum technologies continues to escalate, it would be wise to not lose sight of the very tangible promise and peril that this new quantum era embodies—for much like the nuclear age, it may arrive sooner than we think